Homework 1

(Due date: September 19th)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (14 PTS)

Calculate the result of the additions and subtractions for the following fixed-point numbers.

UNSIGNED (6 pts)		SIGNED (8 pts)	
1.10010 +	1.10101 -	10.101 +	0.0011 -
0.101001	0.0100111	1.10101	1.101101
10.1011 +	100.1 +	1001.0111 -	101.1101 +
1.1101	0.0100101	111.01001	1.1010011

PROBLEM 2 (22 PTS)

Multiply the following signed fixed-point numbers: (10 pts)

i latelpry ene renevimg eighea in	ted point nambers (10 pts)		
01.101 ×	100.001 ×	110.000 ×	0.11001 ×
1.101001	01.10001	10.10101	11.11011

• Get the division result (with x = 4 fractional bits) for the following signed fixed-point numbers: (12 pts).

101.0101 ÷	1.1011 ÷	10.0101 ÷	0.10100 ÷
1.101	1.01101	01.11	110.101

PROBLEM 3 (16 PTS)

- We want to represent numbers between -128.87 and 127.12. What is the fixed point format that requires the fewest number of bits for a resolution better or equal than 0.0015? (5 pts).
- We want to represent numbers between -255.12 and 256.91. What is the fixed point format that requires the fewest number
 of bits for a resolution better or equal than 0.0025? (5 pts).
- Represent these numbers in Fixed Point Arithmetic (signed numbers). Select the minimum number of bits in each case.

	-128.1875	-78.1255	-34.625	207.3125
--	-----------	----------	---------	----------

PROBLEM 4 (12 PTS)

Complete the table for the following fixed point formats (signed numbers): (3 pts)

Fractional bits	Integer Bits	FX Format	Range	Dynamic Range (dB)	Resolution
9	3				
11	5				
15	9				

Complete the table for the following floating point formats (which resemble the IEEE-754 standard) with 16, 24, 48 bits.
 Only consider ordinary numbers. (9 pts)

Exponent bits (E)	Significant bits (p)	Min	Max	Range of e	Range of significand
8	6				
10	13				
15	32				

PROBLEM 5 (36 PTS)

Calculate the decimal values of the following floating point numbers represented as hexadecimals. Show your procedure.

Single (32 bits)		Double (64 bits)	
✓ 90DBD800	✓ 7F85B0AC	✓ DECAFC0FFEE80000	✓ ACCEDE90BEAD5000
√ 800BEEF0	✓ 70DECADE	√ 49A5DEAF8FAD8000	√ 8009BEBEFACE8000
✓ 3CF398C0	✓ 90BEE950	✓ FFFACADE19801990	✓ 70800FEDCAB09000